Academic Rapunzels, or Leaving academia – but hitherto?

This article is about the emotional effect of leaving academia. There is little actual talk about emotions in the article. It is largely an optimistic-sounding story of a career in science communication after a PhD. But why is there so much effort to justify this career “turn” and why is it so heavily about rebranding, organizing, management, objectives, timescales? Why is the first of three main lessons that unemployment is not the same as failure? A society must be very confused if enough people in it genuinely believe that work – or rather paid employment – is the sole kernel of their identity, and that unemployment equals failure.

So while the article sounds like a happy ending to a previously stormy journey through the post-PhD career, it is actually an article about what is wrong with the academic system. It is about leaving research, but not really leaving it, and instead finding work in the fringes, or what I like to think of as the scaffolding of research. It’s an article about an academic system which tricks a lot of people into thinking they are welcome, and then kicks them out because there is not enough space (or funding) for them. There may not be enough room in the lab, the lab is a cut-throat business, only the very best make it. Yet there is always room for one more in the scaffolding! We can always do with more people to take care of the scientists! These academic caretakers are doing a valuable job, some are happy and find their skills well applied, others swallow their disappointment because they are making a living and are even close to what used to be their dream. But why are there so many administrators, communicators, managers, strategists, and so few researchers, or “students” – as academic authors used to like calling themselves in papers only a few decades ago? And why is it mainly women who take these timid career paths out-but-not-really-out of academia, while male PhD holders end up in industry jobs in larger numbers?

The article reminded me of those multiple, identical articles I’ve read about how to find work abroad as a trailing spouse. The authors are all women, and they all say that while real jobs are hard to come by, look how great it is that we now control our own schedule and can work on our own macbook in a hipster cafe. And when you look at their signatures, they are all “freelance writers” or “professional bloggers”. And they do that because that’s what they chose to do. They combine work with family because that’s what they chose to do. And have time to bake cookies (and keep applying for jobs and not getting them) because that’s what they like. I am being cynical, but the point is: when lots of people choose something, they are clearly being reasonable. Being a para-academic who hangs on like Rapunzel on her own hair from the fringes of the academic scaffolding, over the abyss of unemployment, is clearly one of the open paths, or at least a path less closed than its alternatives.

I have no answers – only questions and quibbles.

 

Tagged , , , , , ,

The Mathematics Department at Leicester University

The EMS has issued a statement on the deeply regrettable proposed staff reduction in the Mathematics Department of the University of Leicester. Click through to read it:http://www.euro-math-soc.eu/news/16/09/19/staff-reduction-planned-department-mathematics-leicester-university-uk
Timothy Gowers has written an account of the situation here:

https://gowers.wordpress.com/2016/09/15/in-case-you-havent-heard-whats-going-on-in-leicester/
There is a petition you may wish to sign here:

http://speakout.web.ucu.org.uk/no-cuts-no-confidence-at-university-of-leicester/

Tagged , , , , ,

The mathematicians of Surathkal

http://thewire.in/62631/women-in-mathematics-surathkal/

all emphases mine

Family influence and/or patriarchal power over their children’s education and career paths and aspirations:

“Sabari […] wanted to study medicine. “My grandmother and several others at home, practise home medicine.””

““At teen ages, we do whatever parents tell us to,” she said candidly. “They said take science in 11th and 12th standards so I did.”

“Manasa was lucky because her father was the math teacher. Only one other student at her old school continued to 11th standard.”

“If they [students] join a B.Sc. in maths because they were forced to, then they will soon know the reality, that what they were taught till then is not enough.”

Parental power sustains and reproduces unequal gender roles

Parents don’t want to send their daughters out of the state. I’m in NIT-Surathkal because I come from Karnataka itself. There are constraints.”

“In a society like ours, doing a PhD. is not always encouraged, especially for women as there is an opinion among families that the man must be more qualified. The women agree that they have heard people say things like “who will search for a boy now (now that she’s a PhD.)”.

Managing the dual face of patriarchal power through humour. Family poses both an “enablement” and “constraints” (Sen); parents exercise their freedom to translate their own experiences into shaping your children’s future (“he wasn’t able to finish 10th standard”). Feeling “grateful” and “lucky” for being allowed to flourish against the odds of one’s birth gender!

“Manasa B. counts herself lucky to have a father who is very particular that all his three children be well educated. “He wasn’t able to finish his 10th standard and he was determined that we do.” While she’s grateful for that, she knows that marriage will eventually come into the picture. “They’ve told us that in between studies if we ask you to get married, you can’t say things like ‘no, only after I finish’.” In her case, Manasa joked that she is off the hook until her elder sister gets married.”

Defying family:

“Sabari says that she had to fight a lot before she was allowed to come to NITK for her PhD.“Right before I joined here, one prospective groom came asking for marriage. My parents asked me to stay back and get married. I said, no I will go to Surathkal. If he agrees to let me, then good.”However, he didn’t, and Sabari proceeded with her plans.”

Willpower – but curbed by “adaptive preferences” (Sen):

“Manasa B. realised early on that she had a penchant for mathematics but her only ambition then was to become a teacher.”

Enablements and constraints, tradition:

The intersection of gender and class opens some future avenues and closes others. However this isn’t as black and white as the concept of “discrimination” may suggest: it is overt discrimination, but also internalised beliefs that lead people to put brakes on themselves and those others whom they love and over whom they have power (their children).

“Tenth standard is the highest education students were allowed to reach, especially girls. For the boys, it is better now but back then nobody sent their children out of the village to continue studies and there was no science college nearby.”

Where you go to school matters,” says Manasa. This becomes even more evident, she says, when they interact with their contemporaries from the IITs, IISERs – India’s top research institutes. “That’s when we realise how much we know and how our background and school education plays a role.”

Some constraints are self-restrictions: 

“Manasa said that the will to learn beyond what is considered ‘necessary’ is not something everyone has.”

“From basic education itself, students are hating mathematics a lot.”

“Conversion factors” (Sen) are initiatives, institutions, spaces, “arenas” that help level the playing field for people who have had different starts in life BUT these conversion factors can only ever begin to solve the problem:

“It always helps to collaborate with peers and arenas where they can do this are at government-funded training programmes for mathematicians – specifically the ATM schools (Advanced Training in Mathematics Schools) for teachers and Ph.D. students; and MTTS (Mathematics Training and Talent Search) for B.Sc. and M.Sc. students. […]“These really help. We learn a lot,” says Manasa. At these camps, though, women remain a minority. 

Locked in, or “having a family while female”. Family situation determines professional choices, identity, delineates freedoms. Babies are “not easy to manage” but they are also “our strength”. Female time itself is different: marriage serves even as an anchoring point in time.: “I started my Ph.D. in my sixth year of marriage” rather than “I got married right after I got my undergraduate degree”. To continue with other pursuits, such as a profession, or a passion, women have no other choice but to pass on care and household labour to other women, sometimes across generations (in other cases across nationalities). Unsurprisingly, very few women continue into marriage (in this micro-unrepresentative sample 1 in 5, but this is a very similar optimistic round-up of the actual overall proportion of women with children in science).

Only Kumudakshi is married among the five. She got married right after B.Sc. and has a baby now. “I started my PhD. in my sixth year of marriage. It’s not easy to manage with a baby but they are our strength.” She admits that she is able to do this because her mother lives with them. “Otherwise, managing this would have been a bit difficult. Someone should be there to take care of the house and things.

The generative and motivational belief in the dominance of personal willpower and tenaticy – but intertwined with a false consciousness

The hope? Willpower to discover and pursue your own grains of talents, develop personal tenacity:

“actually, I don’t think it’s true that students will do better in private schools. If they want to study, they will study anywhere.”

Yet, with the above statement – which I’m sure she sincerely believes, not least because I notice the same contradictory tendence in my own thinking and that of many people I’ve talked to –  the same mathematician actually contradicts her own experience when she compares her own educational journey to that of her colleague, the maths’ teacher daughter:

“had told me [the journalist] earlier that her experience studying at a government school was not as challenging as Manasa K.J.’s.”

 

Tagged , , , , , , , ,

Talking Science(ish) in Swansea

A friend saw the show, presented by Rick Edwards and Michael Brooks, and wrote a nice piece about it for the British Science Association blog which you can read here: 

Talking relationships, identity and technology with Science(ish)

More good science communication like this show needed!

Tagged , , , , ,

Sociologists vs statisticians tweet

A brief comparison of the first tweets of the WES: Work, employment and society (sociology) conference in Leeds and the RSS – Royal statistical society conference in Manchester which are happening at the same time. 

How do sociologists vs statisticians tweet about a talk they like? Adjectives vs nouns+verbs!

WES:

“Genuinely one of the best opening plenary talks I’ve ever listened to. Succinct and sophisticated #Wesconf2016”

At the same time the typical response to a good talk at the RSS conference is more matter of fact and informative:

Xia-Li Meng giving brilliant talk on big data at #RSS2016Conf ‘the bigger the data the more likely you will miss the target’ #RSS2016Conf

Or humorous: 

Coffee in hand. Let’s bring on the stats. #RSS2016Conf

Tagged , , , , , , , , , , ,

In her own words: honouring Hanna Neumann

Image: Wikimedia Commons

Hanna Neumann (1914-1971, born Johanna von Caemmerer) was a German-born UK and Australian group theorist. She was the first woman Chair of Pure Mathematics in Australia. She had a fascinaging life story. With her husband Bernhard Neumann, they had five children, four of whom became mathematicians.

A new page on Facebook follows her story told in her own words, like a scrapbook of letters, documents and images – great use of facebook as a platform for telling oral history!

https://www.facebook.com/IHOWNeumann/posts/1103790999712245:0

if you are on Twitter, you can also follow this #NatSciWk, told in her own words (hashtags: #InHerOwnWords #AussieScientist).

The project is created by Women in Science Australia, Australian National Centre for the Public Awareness of Science (CPAS), the NFSA, and The National Museum of Australia.

Tagged , , , , , , , , ,

Talking to crackpots, or how can we communicate science better?

It is widely acknowledged – by scientists at least – that today’s science has become so complex that it is no longer possible to be an encyclopaedic autodidact like it still was in the 17- 19 centuries. While there are still (very, very) few research scientists who have always worked outside academia, none of them are more active than scientists who are at least sometimes working within academia. Today almost all fields in 21st century physics and mathematics are very much community efforts. This does not only have to do with the need for laboratories, but with the sheer complexity of the knowledge accumulated to date even in the most theoretical fields. The stereotypical lone thinker is not only not the norm, but pretty much structurally impossible due to the complexity of what today counts as cutting-edge science.
Thanks to a friend, I came across a wonderful article about science communication written by Sabine Hossenfelder (Frankfurt Institute for Advanced Studies, Germany). She offers a sympathetic, sociological view on what many scientists tend to immediately dismiss as “big theory of everything science crackpots”, from the viewpoint of a professional physicist. 

“Sociologists have long tried and failed to draw a line between science and pseudoscience. In physics, though, that ‘demarcation problem’ is a non-problem, solved by the pragmatic observation that we can reliably tell an outsider when we see one. During a decade of education, we physicists learn more than the tools of the trade; we also learn the walk and talk of the community, shared through countless seminars and conferences, meetings, lectures and papers. After exchanging a few sentences, we can tell if you’re one of us. You can’t fake our community slang any more than you can fake a local accent in a foreign country.”

The problem is, she says, that science enthusiasts (both the “crazy” and the “non-crazy” varieties – though Foucault would tell you that the label “madness” reveals at least as much about the rules and structures of the society which surrounds a person, as about that person’s personality)

“know so little about current research in physics, they aren’t even aware they’re in a foreign country”.

So why do some [men] still persist in trying to offer their grand theories to society – from outside the “not-so-ivory towers” of contemporary universities?

 As for why they are (in Hossenfelder’s sample at least) all men: there is undoubtedly a link between what society thinks a scientist is, and does, a sort of warped folk-theoretical image of lone male geniuses in white lab coats. This is something that researchers of scientific masculity would be better able to analyse.

But I’d turn the question on its head and instead ask: why are we surprised that anybody else is interested in science? As scientists [I always use the word scientist to denote all fields of knowlege in English, like I would in Bulgarian or German, including the humanities] we know only too well that science is one of the most interesting things. So then the difference between “us” and then becomes one of access to the “right” kind of knowledge, which sociologically means access to the “right” kind of knowledge spaces and knowledge institutions. It is important to realise that not all crackpots are crackpots. Some, perhaps many, are curious minds who might have become scientists, had they taken another career track.

This has to do with the different possible purposes of the university: is it a Humboldtian institution aimed at creating public good and educating critical thinkers, or a factory producing skilled workers and commodified knowledge for the market? Of course, neither of these ideological forms exists in a pure way, but German universities are still closer to the form, and American ones to the latter. 

And indeed, as my autodidact friend commented, in Germany they don’t have such “crackpots” and his hypothesis as to why, is that Germany has widely available science libraries and a culture of using them. This should be changing with the advent of online science spaces, but hasn’t. Clearly, cultural change is lagging behind technological change, and there are still people interested in (and obsessed by) science who do not use the multiple and very useful online science forums.

 (Just to make it clear: I’m not at all claiming that German universities are intrinsically better, only that they are more public than market-oriented: they have a whole zoo of other interesting and frustrating problems, such as chronic underfunding, badly functioning internal stratification, inefficient bureaucracy, rigid professorial apparatus, no jobs between postdoc and professor, etc.)

Hossenfelder makes a pertinent observation about ways in which science communication can go wrong: 

“… in the absence of equations, they project literal meanings onto words such as ‘grains’ of space-time or particles ‘popping’ in and out of existence. Science writers should be more careful to point out when we are using metaphors. My clients read way too much into pictures, measuring every angle, scrutinising every colour, counting every dash. Illustrators should be more careful to point out what is relevant information and what is artistic freedom.

Her next point is a much less popular one but possible even more important. In my conversations with mathematicians, I’ve heard many frustrated mathematicians say similar things:

“…journalists are so successful at making physics seem not so complicated that many readers come away with the impression that they can easily do it themselves. How can we blame them for not knowing what it takes if we never tell them?”

So how should we communicate science better? 

First of all, we should communicate science much more. The public deserves to know if not the ins and outs of cutting-edge science, then at least be aware about its existence, and its significance. We must know where to get a map for the “countries” which we may one day (or never) want to visit in person.

Second, the public deserves to know that there are many different valuable types of knowledge, including very abstract or inapplicable fields. This cannot happen while even scientists on the same campus don’t know anything (or don’t even respect) the work done in other university departments.

Third, science must appear real, done by real humans of different genders, colours, classes, ages, voices, faces, talents, interests, family situations, bodily capacities, demeanours, etc. – as it really is, and not as it used to be in some imagined 18th century.

Fourth, science must be presented not simply as a ready product, but as the process and a journey that it is. If the public knew more about the blind alleys, difficulties and disputes along the way, people would not only see science as more real, but also would perhaps appreciate its value more. (Thanks to Marion for adding this point in the comments!) 

Fifth, science must appear fascinating,yet not easy: because it isn’t. It is damn difficult. And you need a group to do it with.

Sixth, and this will counterbalance some of the negative effects of number 4 above: we must get away with the pernicious ideas that difficult = undoable, or that failure = stupidity. In school, kids must learn to learn and to fall many times but never to give up; but also to be smart about finding the right sources to learn from. 

Then there will be more appreciation of science – and perhaps fewer “crackpots” who are curious but lost in the wilderness of unattained knowledge and seeking it in all the wrong places.

Tagged , , , , , , , , ,

Calculus is key for STEM gender gap: new research 

The pipeline that funnels women into careers in math and science is leaky all the way along along, but if one particular leak could be plugged, it might make a dramatic difference. Researchers have identified one change that would increase the number of women in so-called STEM fields (science, technology, engineering and math) by 75 percent.

http://www.vocativ.com/347023/the-calculus-confidence-gap-affects-women-in-stem-more/
(Cartoon: New Yorker)

Tagged , , , , , , , , , ,
%d bloggers like this: