Tag Archives: mathematics

The Mathematics Department at Leicester University

The EMS has issued a statement on the deeply regrettable proposed staff reduction in the Mathematics Department of the University of Leicester. Click through to read it:http://www.euro-math-soc.eu/news/16/09/19/staff-reduction-planned-department-mathematics-leicester-university-uk
Timothy Gowers has written an account of the situation here:

There is a petition you may wish to sign here:


Tagged , , , , ,

Talking to crackpots, or how can we communicate science better?

It is widely acknowledged – by scientists at least – that today’s science has become so complex that it is no longer possible to be an encyclopaedic autodidact like it still was in the 17- 19 centuries. While there are still (very, very) few research scientists who have always worked outside academia, none of them are more active than scientists who are at least sometimes working within academia. Today almost all fields in 21st century physics and mathematics are very much community efforts. This does not only have to do with the need for laboratories, but with the sheer complexity of the knowledge accumulated to date even in the most theoretical fields. The stereotypical lone thinker is not only not the norm, but pretty much structurally impossible due to the complexity of what today counts as cutting-edge science.
Thanks to a friend, I came across a wonderful article about science communication written by Sabine Hossenfelder (Frankfurt Institute for Advanced Studies, Germany). She offers a sympathetic, sociological view on what many scientists tend to immediately dismiss as “big theory of everything science crackpots”, from the viewpoint of a professional physicist. 

“Sociologists have long tried and failed to draw a line between science and pseudoscience. In physics, though, that ‘demarcation problem’ is a non-problem, solved by the pragmatic observation that we can reliably tell an outsider when we see one. During a decade of education, we physicists learn more than the tools of the trade; we also learn the walk and talk of the community, shared through countless seminars and conferences, meetings, lectures and papers. After exchanging a few sentences, we can tell if you’re one of us. You can’t fake our community slang any more than you can fake a local accent in a foreign country.”

The problem is, she says, that science enthusiasts (both the “crazy” and the “non-crazy” varieties – though Foucault would tell you that the label “madness” reveals at least as much about the rules and structures of the society which surrounds a person, as about that person’s personality)

“know so little about current research in physics, they aren’t even aware they’re in a foreign country”.

So why do some [men] still persist in trying to offer their grand theories to society – from outside the “not-so-ivory towers” of contemporary universities?

 As for why they are (in Hossenfelder’s sample at least) all men: there is undoubtedly a link between what society thinks a scientist is, and does, a sort of warped folk-theoretical image of lone male geniuses in white lab coats. This is something that researchers of scientific masculity would be better able to analyse.

But I’d turn the question on its head and instead ask: why are we surprised that anybody else is interested in science? As scientists [I always use the word scientist to denote all fields of knowlege in English, like I would in Bulgarian or German, including the humanities] we know only too well that science is one of the most interesting things. So then the difference between “us” and then becomes one of access to the “right” kind of knowledge, which sociologically means access to the “right” kind of knowledge spaces and knowledge institutions. It is important to realise that not all crackpots are crackpots. Some, perhaps many, are curious minds who might have become scientists, had they taken another career track.

This has to do with the different possible purposes of the university: is it a Humboldtian institution aimed at creating public good and educating critical thinkers, or a factory producing skilled workers and commodified knowledge for the market? Of course, neither of these ideological forms exists in a pure way, but German universities are still closer to the form, and American ones to the latter. 

And indeed, as my autodidact friend commented, in Germany they don’t have such “crackpots” and his hypothesis as to why, is that Germany has widely available science libraries and a culture of using them. This should be changing with the advent of online science spaces, but hasn’t. Clearly, cultural change is lagging behind technological change, and there are still people interested in (and obsessed by) science who do not use the multiple and very useful online science forums.

 (Just to make it clear: I’m not at all claiming that German universities are intrinsically better, only that they are more public than market-oriented: they have a whole zoo of other interesting and frustrating problems, such as chronic underfunding, badly functioning internal stratification, inefficient bureaucracy, rigid professorial apparatus, no jobs between postdoc and professor, etc.)

Hossenfelder makes a pertinent observation about ways in which science communication can go wrong: 

“… in the absence of equations, they project literal meanings onto words such as ‘grains’ of space-time or particles ‘popping’ in and out of existence. Science writers should be more careful to point out when we are using metaphors. My clients read way too much into pictures, measuring every angle, scrutinising every colour, counting every dash. Illustrators should be more careful to point out what is relevant information and what is artistic freedom.

Her next point is a much less popular one but possible even more important. In my conversations with mathematicians, I’ve heard many frustrated mathematicians say similar things:

“…journalists are so successful at making physics seem not so complicated that many readers come away with the impression that they can easily do it themselves. How can we blame them for not knowing what it takes if we never tell them?”

So how should we communicate science better? 

First of all, we should communicate science much more. The public deserves to know if not the ins and outs of cutting-edge science, then at least be aware about its existence, and its significance. We must know where to get a map for the “countries” which we may one day (or never) want to visit in person.

Second, the public deserves to know that there are many different valuable types of knowledge, including very abstract or inapplicable fields. This cannot happen while even scientists on the same campus don’t know anything (or don’t even respect) the work done in other university departments.

Third, science must appear real, done by real humans of different genders, colours, classes, ages, voices, faces, talents, interests, family situations, bodily capacities, demeanours, etc. – as it really is, and not as it used to be in some imagined 18th century.

Fourth, science must be presented not simply as a ready product, but as the process and a journey that it is. If the public knew more about the blind alleys, difficulties and disputes along the way, people would not only see science as more real, but also would perhaps appreciate its value more. (Thanks to Marion for adding this point in the comments!) 

Fifth, science must appear fascinating,yet not easy: because it isn’t. It is damn difficult. And you need a group to do it with.

Sixth, and this will counterbalance some of the negative effects of number 4 above: we must get away with the pernicious ideas that difficult = undoable, or that failure = stupidity. In school, kids must learn to learn and to fall many times but never to give up; but also to be smart about finding the right sources to learn from. 

Then there will be more appreciation of science – and perhaps fewer “crackpots” who are curious but lost in the wilderness of unattained knowledge and seeking it in all the wrong places.

Tagged , , , , , , , , ,

Calculus is key for STEM gender gap: new research 

The pipeline that funnels women into careers in math and science is leaky all the way along along, but if one particular leak could be plugged, it might make a dramatic difference. Researchers have identified one change that would increase the number of women in so-called STEM fields (science, technology, engineering and math) by 75 percent.

(Cartoon: New Yorker)

Tagged , , , , , , , , , ,

The Spectre of Maths Anxiety

What an anger-inducing report for a Monday morning. It is a good report, but the subject made me angry. Reading a full historical account of why there is such a thing as maths anxiety at all, and why it persists into the 21st century, and why it is especially more prevalent among women, is so depressing. Besides, I’m certain that things are better (or at least less bad) in countries other than the UK, especially in ex-state socialist education systems. The gender imbalance exists, but is far less horrible – and this is linked, I believe, with the far less rigid “class” structure of the societies. Also in places like Italy and Portugal. How come nobody bothers to look and steal the good ideas. 
The full report (very readable):
The Fear Factor: Maths Anxiety in girls and women, 2015, by Samantha Callan, a report commissioned by Maths Action.
Tagged , , , , , , , , , ,

Fields medalist Klaus Roth (1925-2015) has left a fortune to health charities

Klaus Roth, Britain’s first Fields Medalist, who died last year at the age of 90, has left over £1.3 mln to the charities Chest, Heart and Stroke Scotland and MacMillan Cancer Support in Inverness, Scotland. How wonderful to read not only about a life full of mathematics, but also that is has been rewarded financially. It is not so often that I read of a successful professional mathematician who has passed away in their old age, and with a substantial fortune.

Roth’s life story is fascinating. One of the many British scientists of German origin, Klaus Friedrich Roth was born in Breslau (today Poland) in 1925 and came to Britain as a 8-year old child in 1933 with his Jewish-German parents. He went to St.Paul’s school in London and then studied mathematics in Cambridge. He was good at maths, but his anxiety during exams was so bad that he graduated with a 3rd class degree and his tutor advised him to “some commercial job with a statistical bias”. So Roth taught maths at school (Gordonstoun, in Scotland) for a year and then was accepted onto a Masters course at UCL. He went on to become a lecturer at UCL after completing his Masters. Times were different. Today he might not have made it to a MMath course so easily, let alone receive a lectureship so soon after. He would have had to move countries many times before having a shot at getting a permanent job somewhere.

Klaus Roth went on to make important contributions to number theory (analytic theory of numbers and more precisely Diophantine approximation) and to live happily with his wife, Dr Melek Khairy, until her death in 2002.  Pity the article in the Scotsman mentions only the lovely story of how they met (classroom romance! she attended his lectures at UCL), and that they did not have children, but omits the fact Dr Khairy was a medical and experimental psychologist at Imperial College London. Plenty of happy marriages in their generation were composed of an academic husband and a homemaker wife, with or without offspring. But when someone, especially a woman, of that generation isn’t a homemaker, this is worth mentioning. In fact I assumed that until I googled her name for no particular reason, only to come across a bunch of paper she had published in the 1950s and 60s.

Another relevant biographical detail is that she died of cancer in 2002. After her death Roth moved to live in a nursing home in Inverness. This may be why he felt so committed to the cause of health and cancer support in particular.

In the book Art in the Life of Mathematicians (edited by Anna Kepes Szemerédi and viewable on google books) there is a chapter written by the editor which is entitled “Conversations with Klaus Roth” (pp. 249-253). Klaus and Melek were avid dancers and loved Latin music and Mahler.

Klaus Roth got the Fields Medal in 1958 for his contribution to the Thue-Siegel theorem. Roth’s theorem proves that any irrational algebraic number has an approximation exponent equal to two (https://en.wikipedia.org/wiki/Thue%E2%80%93Siegel%E2%80%93Roth_theorem).

More about the story: http://www.scotsman.com/news/mathematician-leaves-1m-to-help-sick-patients-in-inverness-1-4111648


Tagged , , , , , , , , , , , ,

More about Grothendieck

Yet More About Grothendieck

(Reposted from the Not Even Wrong blog)

Tagged ,

Conference: Association for the Philosophy of Mathematical Practice

There’s a very interesting conference in Paris right now. Such a pity I’m not there. In fact, this post only appears now, because I only just found out about it. Looking forward to reading the papers.

3rd Congress of the Association for the Philosophy of Mathematical Practice (APMP) Paris, Institut Henri Poincaré, 2-4 November 2015

Programme: http://conference-apmp.sciencesconf.org/?lang=en

Tagged , , , , , , , , , , ,

Ada Lovelace Documentary online

A very nice documentary about Ada Lovelace, presented by matheamatician Hannah Fry! On the BBC website, unfortunately only available until tomorrow 10pm:


Tagged , , , , , , , , , , , ,
%d bloggers like this: