Talking to crackpots, or how can we communicate science better?

It is widely acknowledged – by scientists at least – that today’s science has become so complex that it is no longer possible to be an encyclopaedic autodidact like it still was in the 17- 19 centuries. While there are still (very, very) few research scientists who have always worked outside academia, none of them are more active than scientists who are at least sometimes working within academia. Today almost all fields in 21st century physics and mathematics are very much community efforts. This does not only have to do with the need for laboratories, but with the sheer complexity of the knowledge accumulated to date even in the most theoretical fields. The stereotypical lone thinker is not only not the norm, but pretty much structurally impossible due to the complexity of what today counts as cutting-edge science.
Thanks to a friend, I came across a wonderful article about science communication written by Sabine Hossenfelder (Frankfurt Institute for Advanced Studies, Germany). She offers a sympathetic, sociological view on what many scientists tend to immediately dismiss as “big theory of everything science crackpots”, from the viewpoint of a professional physicist. 

“Sociologists have long tried and failed to draw a line between science and pseudoscience. In physics, though, that ‘demarcation problem’ is a non-problem, solved by the pragmatic observation that we can reliably tell an outsider when we see one. During a decade of education, we physicists learn more than the tools of the trade; we also learn the walk and talk of the community, shared through countless seminars and conferences, meetings, lectures and papers. After exchanging a few sentences, we can tell if you’re one of us. You can’t fake our community slang any more than you can fake a local accent in a foreign country.”

The problem is, she says, that science enthusiasts (both the “crazy” and the “non-crazy” varieties – though Foucault would tell you that the label “madness” reveals at least as much about the rules and structures of the society which surrounds a person, as about that person’s personality)

“know so little about current research in physics, they aren’t even aware they’re in a foreign country”.

So why do some [men] still persist in trying to offer their grand theories to society – from outside the “not-so-ivory towers” of contemporary universities?

 As for why they are (in Hossenfelder’s sample at least) all men: there is undoubtedly a link between what society thinks a scientist is, and does, a sort of warped folk-theoretical image of lone male geniuses in white lab coats. This is something that researchers of scientific masculity would be better able to analyse.

But I’d turn the question on its head and instead ask: why are we surprised that anybody else is interested in science? As scientists [I always use the word scientist to denote all fields of knowlege in English, like I would in Bulgarian or German, including the humanities] we know only too well that science is one of the most interesting things. So then the difference between “us” and then becomes one of access to the “right” kind of knowledge, which sociologically means access to the “right” kind of knowledge spaces and knowledge institutions. It is important to realise that not all crackpots are crackpots. Some, perhaps many, are curious minds who might have become scientists, had they taken another career track.

This has to do with the different possible purposes of the university: is it a Humboldtian institution aimed at creating public good and educating critical thinkers, or a factory producing skilled workers and commodified knowledge for the market? Of course, neither of these ideological forms exists in a pure way, but German universities are still closer to the form, and American ones to the latter. 

And indeed, as my autodidact friend commented, in Germany they don’t have such “crackpots” and his hypothesis as to why, is that Germany has widely available science libraries and a culture of using them. This should be changing with the advent of online science spaces, but hasn’t. Clearly, cultural change is lagging behind technological change, and there are still people interested in (and obsessed by) science who do not use the multiple and very useful online science forums.

 (Just to make it clear: I’m not at all claiming that German universities are intrinsically better, only that they are more public than market-oriented: they have a whole zoo of other interesting and frustrating problems, such as chronic underfunding, badly functioning internal stratification, inefficient bureaucracy, rigid professorial apparatus, no jobs between postdoc and professor, etc.)

Hossenfelder makes a pertinent observation about ways in which science communication can go wrong: 

“… in the absence of equations, they project literal meanings onto words such as ‘grains’ of space-time or particles ‘popping’ in and out of existence. Science writers should be more careful to point out when we are using metaphors. My clients read way too much into pictures, measuring every angle, scrutinising every colour, counting every dash. Illustrators should be more careful to point out what is relevant information and what is artistic freedom.

Her next point is a much less popular one but possible even more important. In my conversations with mathematicians, I’ve heard many frustrated mathematicians say similar things:

“…journalists are so successful at making physics seem not so complicated that many readers come away with the impression that they can easily do it themselves. How can we blame them for not knowing what it takes if we never tell them?”

So how should we communicate science better? 

First of all, we should communicate science much more. The public deserves to know if not the ins and outs of cutting-edge science, then at least be aware about its existence, and its significance. We must know where to get a map for the “countries” which we may one day (or never) want to visit in person.

Second, the public deserves to know that there are many different valuable types of knowledge, including very abstract or inapplicable fields. This cannot happen while even scientists on the same campus don’t know anything (or don’t even respect) the work done in other university departments.

Third, science must appear real, done by real humans of different genders, colours, classes, ages, voices, faces, talents, interests, family situations, bodily capacities, demeanours, etc. – as it really is, and not as it used to be in some imagined 18th century.

Fourth, science must be presented not simply as a ready product, but as the process and a journey that it is. If the public knew more about the blind alleys, difficulties and disputes along the way, people would not only see science as more real, but also would perhaps appreciate its value more. (Thanks to Marion for adding this point in the comments!) 

Fifth, science must appear fascinating,yet not easy: because it isn’t. It is damn difficult. And you need a group to do it with.

Sixth, and this will counterbalance some of the negative effects of number 4 above: we must get away with the pernicious ideas that difficult = undoable, or that failure = stupidity. In school, kids must learn to learn and to fall many times but never to give up; but also to be smart about finding the right sources to learn from. 

Then there will be more appreciation of science – and perhaps fewer “crackpots” who are curious but lost in the wilderness of unattained knowledge and seeking it in all the wrong places.

Tagged , , , , , , , , ,

7 thoughts on “Talking to crackpots, or how can we communicate science better?

  1. bymarion says:

    Very interesting – Hossenfelder’s article is great, thanks for the link!
    I like your points. I think nr. 2 is a major issue, especially when it comes to the way many natural scientists consider the humanities.
    Another thing is perhaps that science communication tends to focus largely on results, and less on the methods and the processes – including “failures” of “dead-ends”, thus giving a biased perspective on what science is all about. Do you have any thoughts about this ?

    • anelim says:

      Indeed! In my experience the mutual ignorance goes both ways. There are people in the humanities and social sciences who don’t know or care to know about the natural and mathematical sciences. I was unprepared for the number of question I received in the past three years from colleagues who don’t understand why I’m studying mathematicians and how that can possibly be interesing

      • bymarion says:

        Ah! So annoying!
        And what do mathematicians think?

      • anelim says:

        Ive had many different reactions. Many are surprised at first that they are “interesting”. A few misunderstand what I am really looking for, or think they understand by rephrasing it into another question – they are usually the ones who assume that I’m creating a large dataset and performing statistical analysis on it, and become disappointed when I explain that my methodology is qualitative. But a lot of them (including many from the first two groups, once they come round to seeing what it is I’m after) understand and have already thought about many of the same issues, often very articulately!

        Also it seems to me that there are more mathematicians who take active interest in social science, history, philosophy or practice some type of art (music, photography, etc.) than there are social scientists who are interested in science. Ive certainly felt like a white crow. I think both parties are missing out a lot.

        There is a fascinating annual event at one of “my” math departments: they invite a small group of artists for a one-day visit. It is always on the Friday after the artists have visited four other departments that week. No collaboration or outcome is expected, the idea is just to create a common space. It’s so much fun… but also it seems to change both sides: the artists leave with a much better idea about what mathematics is and that mathematicians are very interesting and fun people, and mathematicians’ enjoy having the opportunity to communicate their work to curious outsiders and find out that even if you are completely uneducated in maths, you might still be interesting to talk to.

      • bymarion says:

        Very nice! I’m glad to hear that. I remember that the few mathematicians I got to meet when working in physics were indeed very open-minded, cultivated & interested by other fields, including social sciences and arts.
        Things were very different in physics, in my experience (if you asked me where to find scientists who totally ignore/disdain social science, I’d say go to a physics lab! )
        But I agree with you to say that both parties are missing out a lot. It’s very interesting to have your perspective. I’ve hear many physicists claiming that social sciences are useless because not thorough. I’d be very curious to hear what it is about science/math that some of your colleagues find uninteresting or unappealing.

      • anelim says:

        Perhaps my next project should be with physicists 😉 there is a great ethnography book for the 90s called “Beamtimes and Lifetimes” by Sharon Traweek, about high energy physicists:

        The question about social scientists not liking mathematics is huge, I’m not sure where to start. I think part of it is that a lot of bright teenagers go into university with the conviction that they “hate maths”, or “are bad at maths”. Lockhart’s Lament comes to mind! Some of them go on to become academics and because of the way curricula are structured or other reasons, they are never exposed to interesting mathematics. As to what in particular they don’t like about maths: I don’t have an answer because to me it seems that they don’t like what they *think* maths is, based on their school memories. I’ve given Lockhart’s essay to a couple of math-hating anthropologists and sociologists and they were quite fascinated and said they never thought of maths as something fun and creative…

  2. anelim says:

    Your second point about science as a process is even more important. I think I will add it in the list above. It is linked to the common misrepresentation of science as “easy” but it is a separate issue.

    I’ve had to assure several people, half-jokingly, half-seriously, that no, mathematics has not been “fully discovered yet” and that the mathematicians I talk to don’t sit and do very long sums all day (not even computational number theorists)…

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: