In this post I try to summarise the main questions of my study.

This is a three-year study (official summary here) about the **working lives and career trajectories of scientists in the mathematical and computer sciences** in the UK and Germany. **My main focus is on the early stages of career – whether in academia, industry, or elsewhere – and how career and life intersect in the “working life” of a mathematician. **Think of it as an extended CV focusing not only on key events in the working biography but also including key life events (such as moving countries, leaning a language, having children) and all the decision making and chance involved in the actual unfolding of your life which remains hidden between the lines of the official CV.

I’m looking to interview mathematicians/computer scientists with a range of experiences – postdocs, before and soon after Habilitation, PhD students or people who started a PhD and dropped out, established mathematicians with longer careers (research and/or teaching, academia or industry…), researchers who are unemployed, on career break or new career direction, on parental leave, international and native students etc. I’m also interested in international trajectories, gender-related issues, family, health, “life outside mathematics”, and any other important aspects of a biography.

In order to see the bigger picture and get a better sense of historical change in how careers unfold, the study also looks at the biographies of more established or retired scientists, as well as younger university students in maths and related subjects and their career plans (whether they consider a future career in research or not). A comprehensive study comparing generations of mathematicians would be great…maybe that will be my next project!

Here are the initial **research questions** – which become more detailed as the research progresses. (I say “mathematician” for short, but I mean “researcher in mathematics or computer science”):

**The life and “career trajectory” of a mathematician:** What careers and livelihoods do people have in mathematics? How are actual lives different from common stereotypes? How is one’s working life shaped by working as a mathematician? What would have been different, if he or she weren’t a mathematician? What does the lifecourse of a mathematician look like – what key stages, events, breaks, dis/continuities does it have?

**The work of a mathematician:** What is it that mathematicians do? How do they work with research objects which are immaterial, yet real at the same time? What is the social, political and material “scaffolding” that makes their work possible: institutions, social relations, epistemic communities and cultures, daily routines, employment arrangements, etc.? Where do proofs come from? What is the role of different technologies, such as computers, blackboards or coffee machines? What technologies, tricks, tacit rules, institutional arrangements are needed for the creation, maintenance and transmission of mathematical knowledge?

**Who is a mathematician:** What does it mean to be a mathematician? Why do mathematicians do maths, and what else do they (have to, enjoy to) do? How do others decide that you are ‘fit’ to be a mathematician? How, in practice, does one get to become a mathematician? How does one choose in what bit of mathematics to specialise? How does one learn to speak like a mathematician? I want to know in what terms mathematicians talk about their own lives, how they make sense of their profession

**Mathematical institutions and social environment**: But I’m not only concerned with individuals. A sociologist cannot understand mathematical lives separated from the institutions that mathematicians ‘inhabit’ (in sociology slang, “institutions” here refers to the network of visible and invisible rules, spaces and traditions which enable humans to practice mathematics: such as universities, funding bodies, journals, conferences, invisible “institutions” such as mathematical notation, fields of mathematics and so on…) How do these institutions function, according to what rules, and who makes up those rules? It is all very good to say that mathematics is the ideal objective science, or at least as close to objective as any field of inquiry can be. But even so, the living, breathing and thinking mathematicians that create and use and explain this beautiful and objective science also inhabit the same real imperfect world as everyone else. Mathematicians also negotiate ‘mundane’ things such as finding jobs, writing down the stuff they have thought about, going to work, arranging childcare and so on. How do they square these two worlds, of ‘mathematics’ and of ‘everyday life’, and how do they translate between them? More importantly, how do they themselves see these two (or maybe just one?) world?

Related to the last question,** in what direction is the mathematical world changing and how have political and economic realities in the UK and Germany (and Europe and the world) affected it? **In particular, I want to know to what extent the overall trend for** insecure academic jobs and complex career paths spanning multiple countries** is affecting the men and women who do research in the mathematical or computing sciences.

**Germany and the UK**

The fieldwork will be conducted in the UK and in Germany and will also look at the different pathways in which marketisation and internationalisation of science (pure and applied mathematics in particular) is happening in both countries. Germany and the UK are the two largest mathematics research communities within the EU, and leading partners – and competitors – for each other. Within UK’s collaborative mathematics research portfolio, collaborations with Germany are the second most significant ones after those with the US (followed by China, France and India); for Germany, the situation is the same. The relative average impact of papers co-authored by UK and German researchers is higher than that of UK-authored papers, or of UK collaborative papers with researchers from other countries; the same holds true from a German standpoint. The two countries are part of a global mathematics community and participate in a lively exchange of mathematical ideas and of mathematicians, but their different education and science policy trajectories mean that German and British mathematicians get exposed to very different institutional environments. There are complex interactions and permeable boundaries between the German and UK ‘mathematical worlds’ in terms of job opportunities, research funding, conferences, collaboration structures (interestingly, especially at early-career level, these are mostly one-directional: German graduates into UK jobs). From both a German and a British perspective, comparisons between Europe’s two largest and most prolific national mathematical communities are useful. In Germany, the neoliberal narrative has only more recently coexisted with that of university as a public good. In fact, marketisation is sometimes seen as a superior alternative and as a panacea to the problems created by the hierarchical rigidity, administrative complexity, and inefficiency of traditional German universities. From a German perspective in particular, it is interesting to study the bad as well as the good effects of marketisation on academic work, labour and careers in Britain.

**“Definition”
**

For now, I define “mathematician or computer scientist” narrowly: as a scientist working professionally in the mathematical and computing sciences (regardless of whether it is pure, applied, both, or somewhere in between, or whether the mathematician rejects the pure/applied divide). S/he is usually attached to a university or research institute. S/he may be, or have been until recently, involved in teaching and/or writing and/or research. At the moment I focus mainly on mathematicians who do research, although it is interesting to see alternative pathways, e.g. mathematicians who have wanted to do research, and have ended up branching out in other activities, e.g. specialising in school teaching.

**Basic premises
**

I’m starting this project with two very simple conjectures.

*First, working in mathematics is just like any other job.* It can be described in terms such as work, employment, career, labour, profession, livelihood, labour market, or vocation. It involves things that one does every day, and things one must (or must not) do, in order to qualify as a mathematician. It combines aspects of intellectual, physical, and emotional labour. It can involve mundane tasks, creativity, management, reading, writing, public speaking, publishing, editing, advising younger people or one’s peers, thinking, discussing, presenting ideas, experiments (physical or imagined), the need to organise people, things and ideas, travel, job-hunting, and much more. Mathematical research and teaching is organised into a sectoral ‘labour market’ with its own sub-labour markets – or at least can be analysed in labour market terms or as a “subsector” of science, as is common nowadays. The mathematical community has its internal formal and informal networks. It has rules and freedoms, and usually-taken-for-granted truths (or conventions, as the French sociologists Boltanski and Thevenot would put it). A sociologist can discover trends and compare mathematical (working) lives to ones in other careers and jobs.

*Second, however, working in mathematics is different from all other jobs*, in and out of science. It has specifics which make it special and distinct. Working as a mathematician affects your career, your life course, your options and choices, your difficulties, your social and spatial mobility, potential circles of friends or partners, the meaning you attach to work, the reasons and motivations that urge you to work, and the variety of typical and unique life-paths that you are likely to experience throughout the span of your working life. In other words, being a mathematician shapes your identity and your biography in a unique way, as well as just providing you with something to do and putting bread on the table (how easy it is to earn one’s livelihood as a mathematician, man or woman, is a related question).

**Nonmathematician studying mathematicians: an “outsider” researcher
**

I am not a mathematician which makes me an outsider to the world of mathematics.

I studied mathematics until the end of high school and very much enjoyed it – but the only career option I could think of using a mathematics entrance exam was economics, which I didn’t like at the time. The thought of becoming a mathematician just hadn’t crossed my mind. Perhaps this was because I come from a relatively small, industrial Bulgarian city, and I didn’t know any scientists or researcher in real life Or perhaps I just wasn’t that good at mathematics. Anyway, now I am convinced it is very important for school students to be exposed to as many career ideas as possible, because who knows how many better choices could be made by young people after school.

I went to university to study European Studies and later Sociology which had no mathematics courses (apart from very little applied statistics in 2001-2). But I find mathematics fascinating and have often wondered what it would have been like to study mathematics in university and this project gave me an opportunity to find out more. This past academic year I attended lectures and seminars with the first year cohort of mathematics students in a British university, in order to understand a little better what it is that mathematicians do. I also read anything I can understand, and talk to many professional mathematicians as often as I can.

And, as the long-term partner of a former PhD student and current academic mathematician, and a postdoctoral researcher myself, I guess I am also a “participant observer” or “insider” in a certain limited sense.

Long story short, although I’m very much a non-mathematician, I can hopefully understand something of what makes mathematicians love their job.